A spatial model of autocatalytic reactions
نویسندگان
چکیده
Biological cells with all of their surface structure and complex interior stripped away are essentially vesicles — membranes composed of lipid bilayers which form closed sacs. Vesicles are thought to be relevant as models of primitive protocells, and they could have provided the ideal environment for pre-biotic reactions to occur. In this paper, we investigate the stochastic dynamics of a set of autocatalytic reactions, within a spatially bounded domain, so as to mimic a primordial cell. The discreteness of the constituents of the autocatalytic reactions gives rise to large sustained oscillations, even when the number of constituents is quite large. These oscillations are spatio-temporal in nature, unlike those found in previous studies, which consisted only of temporal oscillations. We speculate that these oscillations may have a role in seeding membrane instabilities which lead to vesicle division. In this way synchronization could be achieved between protocell growth and the reproduction rate of the constituents (the protogenetic material) in simple protocells.
منابع مشابه
Chaos Control in a Non-Isothermal Autocatalytic Chemical Reactor
In this paper, a reaction system consisting of two parallel, non-isothermal autocatalytic reactions in a Continuous Stirred Tank Reactor (CSTR) has been considered. Reactor chaotic behavior is possible for certain values of system parameters. Two types of controllers are designed and compared in order to control both the reactor temperature and the product concentration. T...
متن کاملTutorial Review: Simulation of Oscillating Chemical Reactions Using Microsoft Excel Macros
Oscillating reactions are one of the most interesting topics in chemistry and analytical chemistry. Fluctuations in concentrations of one the reacting species (usually a reaction intermediate) create an oscillating chemical reaction. In oscillating systems, the reaction is far from thermodynamic equilibrium. In these systems, at least one autocatalytic step is required. Developing an instinctiv...
متن کاملAutocatalytic Replication of Polymers Revisited
A simple computational model for the emergence of autocatalytic sets as described in (Farmer et al., 1986) is reimplemented. Results are found to generally agree with the major theme in the original work: increasing the initial polymer variety in a toy chemical soup scenario increases the likelihood that a complex autocatalytic set will suddenly bootstrap itself into existence. Quantitatively, ...
متن کاملAUTOCATALYTIC REPLICATION OF IjOLYMERS
We construct a simplified model for the chemistry of molecules such as polypeptides or single stranded nucleic acids, whose reactions can be restricted to catalyzed cleavage and condensation. We use this model to study the spontaneous emergence of autocatalytic sets from an initial set of simple building blocks, for example short strands of ammo acids or nucleotides. When the initial set exceed...
متن کاملCompetitive autocatalytic reactions in chaotic flows with diffusion: prediction using finite-time Lyapunov exponents.
We investigate chaotic advection and diffusion in autocatalytic reactions for time-periodic sine flow computationally using a mapping method with operator splitting. We specifically consider three different autocatalytic reaction schemes: a single autocatalytic reaction, competitive autocatalytic reactions, which can provide insight into problems of chiral symmetry breaking and homochirality, a...
متن کامل